Keso, A scalable, reliable and secure

read/write peer-to-peer file system
Mattias Amnefelt
Johanna Svenningsson

Master Thesis at IMIT, KTH

+ Examiner: Thomas Sj6land

+ Supervisor: Luc Onana Alima

+ Opponent: Joanna Kuhn

Master Thesis at IMIT, KTH

* Goal:

+ Design a read/write file system suited for real world
usage.

* The project:
* Literature study
+ Design of Keso
+ Implementation of DKS
+ Partial implementation of Keso

This presentation

+ Background
* DKS
+ Keso

What is Keso??

* Keso Is a distributed file system built on a peer-
to-peer infrastructure.

+ Completely decentralized

¢ Scalable

* Secure

¢ Self-organizing

+ Designed for real-world usage

Why peer-to-peer?

+ Fault tolerant

¢+ Scalable
* Makes use of unused resources

Unused resources

Measurements taken at the IT-department (IT-
Enheten) at KTH.

Results:
* 50% of local hard drives unused on workstations

+ 3.5 times as much free disk on workstations as was stored in
the their distributed file system

* 24% of the data on the file servers was redundant

How Keso works

+ Runs on workstations

* Files split into blocks and distributed over the
participating nodes

* Uses a combination of symmetric and asymmetric
encryption

+ Data blocks and directories are replicated to f nodes
to provide redundancy

+ Built on top of the DKS overlay network

Implementation

*+ Made in C++

* Supports all basic file system operations — read,
write, delete, mkdir, rmdir...

+ No access control
* No kernel support

Overview of DKS

* Logical network on top of the underlying network
* Distributed Hash Table
+ Small routing tables

+ Self-organizing
+ Strong guarantees
* Built-in replication

+ Nodes are assigned
Identifiers

+ Organized in a ring

* Pointers are kept to
nodes at exponentially
Increasing distance

12

8 level 1

1 level 4

2 level 3

4 level 2

+ Data is assigned keys
from the same identifier
space

+ Stored at the node with

the closest succeeding
Identifier

* With each hop, the

C
C

C

Istance to the
estination is at least
ecreased by half

Design objectives

+ Keso should

+ Make use of unutilized resources

+ Avoid storing redundant data

+ Scale well and support thousands of clients
* Be self-organizing

+ Be a secure file system suited for a real-world
environment

Overview
* Directories and files

+ Static and content hash keys
* Old versions of files kept in the file system

+ Data Is encrypted in a way that avoid storing
unnecessarily redundant data

Overview of files

Data is split into blocks of
equal size

Blocks are referenced from a
block list in the inode

Both blocks and inodes are
stored in DKS using a hash
of their contents

All files which contain the
same data reference the
same blocks

Metadata

Type: File
Modtime
Creator
Permissions

Blocklist

NN

Datablock

Datablock

Datablock

/
d

Datablock

Overview directories

+ Acts as a name/inode
lookup service

* |dentifiers never
changes

Metadata

Type: Directory
Modtime ACL
Creator

Permissions

Namel
Name2
Name3

[Create, 12345, mattiasa], [Create, 4711, mattiasa]
[Delete, 17, mea], [Create, 11147, mattiasa], [Create, 42, mea]
[Create, 52, root]

Versioning
+ All versions of files are kept

¥+ Users can go back through
a file's history

+ Directories contain a list of
file versions

+ Only blocks which are
changed must be stored
additionally

Inode, version 1

Metadata

Createtime
Permissions
Creator

Blocklist

ol
N

Inode, version 2

Metadata
Createtime
Permissions
Creator

Blocklist

Datablock

Datablock

Datablock

Datablock

Datablock

* Access control

* Data privacy
* Tamper protection

Access control

* PKI — each user and node has a public/private
key pair

* Each directory has a symmetric key used for
protecting data in that directory

* The symmetric key for a directory is encrypted
with the public keys of all users and groups
permitted to access files in that directory

Data privacy

* Each file i1s encrypted using its own content
hash

* The encrypted block is stored in DKS using the
content hash of the cipher text

* Both the hash of the clear text and cipher text
blocks are stored in the inode

* The inode is finally encrypted with the
symmetric directory key.

Tamper protection

+ Data blocks and inodes are
stored using the hashes of

their contents

+ When changes are

committed to the directory,
the entire latest version and

the change is signed

+ This makes sure that
changes can be tracked
through time.

Metadata

Type: Directory
Modtime ACL
Creator

Permissions

Namel
Name?2
Name3

|Create, 12345, mattiasa], |Create, 4711, mattiasa|

[Delete, 17, mea],
[Create, 52, root]

Signaturc

[Create, 11147, mattiasa], [Create, 42, mea]

Storing data

+ Data is replicated on a number of nodes using the replication
scheme of DKS

+ When nodes store data they send acknowledgments to the
"client” node. The "client” node waits until enough nodes
have acknowledged that they have saved the data.

Implementation

+ Three separate modules
+ DKS

Communication

+ LocalStore

Kernel

Userland

Storing data
+ Keso

Knowledge about the file
system structure

Main achievements

+ Design and implementation of a decentralized, scalable and
fault-tolerant read/write file system on top of an overlay
network such as DKS.

+ Provide access control, data privacy and tamper protection
while avoiding unnecessarily storing redundant data.

¢ Collected statistics which show that our design is reasonable
In the real world.

= onclusion e

Future work
* Complete implementation
+ Kernel interaction
* Quota
+ Conflict resolution

Questions?

File

Split

Hash

-~

Data Block

Data Block

Data Block

l

=

Identifier

_ Encrypted i
Encrypt Data Block Hash
Store| =

Location

