
KesoKeso

Keso, A scalable, reliable and secure 
read/write peer-to-peer file system

Mattias Amnefelt
Johanna Svenningsson



Master Thesis at IMIT, KTH
Examiner: Thomas Sjöland

Supervisor: Luc Onana Alima

Opponent: Joanna Kühn

KesoKeso



Master Thesis at IMIT, KTH
Goal:

Design a read/write file system suited for real world 
usage.

The project:

Literature study

Design of Keso

Implementation of DKS

Partial implementation of Keso

KesoKeso



This presentation
Background

DKS

Keso

KesoKeso



What is Keso?
Keso is a distributed file system built on a peer-
to-peer infrastructure.

Completely decentralized

Scalable

Secure

Self-organizing

Designed for real-world usage

KesoKeso



Why peer-to-peer?
Fault tolerant

Scalable

Makes use of unused resources

KesoKeso



Unused resources
Measurements taken at the IT-department (IT-

Enheten) at KTH.

Results:

50% of local hard drives unused on workstations 

3.5 times as much free disk on workstations as was stored in 
the their distributed file system

24% of the data on the file servers was redundant

KesoKeso



How Keso works
Runs on workstations

Files split into blocks and distributed over the 
participating nodes

Uses a combination of symmetric and asymmetric 
encryption

Data blocks and directories are replicated to f nodes 
to provide redundancy

Built on top of the DKS overlay network

KesoKeso



Implementation
Made in C++

Supports all basic file system operations – read, 
write, delete, mkdir, rmdir...

No access control

No kernel support

KesoKeso



Overview of DKS
Logical network on top of the underlying network

Distributed Hash Table

Small routing tables

Self-organizing

Strong guarantees

Built-in replication

The DKS overlay networkThe DKS overlay network



Nodes are assigned 
identifiers

Organized in a ring

Pointers are kept to 
nodes at exponentially 
increasing distance

The DKS overlay networkThe DKS overlay network



Data is assigned keys 
from the same identifier 
space

Stored at the node with 
the closest succeeding 
identifier

With each hop, the 
distance to the 
destination is at least 
decreased by half

The DKS overlay networkThe DKS overlay network



Design objectives
Keso should

Make use of unutilized resources

Avoid storing redundant data

Scale well and support thousands of clients

Be self-organizing

Be a secure file system suited for a real-world 
environment

KesoKeso



Overview
Directories and files

Static and content hash keys

Old versions of files kept in the file system

Data is encrypted in a way that avoid storing 
unnecessarily redundant data

KesoKeso



Overview of files
Data is split into blocks of 
equal size

Blocks are referenced from a 
block list in the inode

Both blocks and inodes are 
stored in DKS using a hash 
of their contents

All files which contain the 
same data reference the 
same blocks

KesoKeso



Overview directories
Acts as a name/inode 
lookup service

Identifiers never 
changes

KesoKeso



Versioning
All versions of files are kept

Users can go back through 
a file's history

Directories contain a list of 
file versions

Only blocks which are 
changed must be stored 
additionally

KesoKeso



Security in KesoSecurity in Keso

Access control

Data privacy

Tamper protection



Security in KesoSecurity in Keso

Access control

PKI – each user and node has a public/private 
key pair

Each directory has a symmetric key used for 
protecting data in that directory

The symmetric key for a directory is encrypted 
with the public keys of all users and groups 
permitted to access files in that directory



Security in KesoSecurity in Keso

Data privacy

Each file is encrypted using its own content 
hash

The encrypted block is stored in DKS using the 
content hash of the cipher text

Both the hash of the clear text and cipher text 
blocks are stored in the inode

The inode is finally encrypted with the 
symmetric directory key.



Security in KesoSecurity in Keso

Tamper protection
Data blocks and inodes are 
stored using the hashes of 
their contents

When changes are 
committed to the directory, 
the entire latest version and 
the change is signed

This makes sure that 
changes can be tracked 
through time.



Storing data
Data is replicated on a number of nodes using the replication 
scheme of DKS 

When nodes store data they send acknowledgments to the 
”client” node. The ”client” node waits until enough nodes 
have acknowledged that they have saved the data.

KesoKeso



Implementation
Three separate modules

DKS
Communication

LocalStore

Storing data

Keso

Knowledge about the file 
system structure

KesoKeso



Main achievements

Design and implementation of a decentralized, scalable and 
fault-tolerant read/write file system on top of an overlay 
network such as DKS.

Provide access control, data privacy and tamper protection 
while avoiding unnecessarily storing redundant data.

Collected statistics which show that our design is reasonable 
in the real world.

ConclusionConclusion



Future work

Complete implementation

Kernel interaction

Quota

Conflict resolution

ConclusionConclusion



Questions?

ConclusionConclusion



Security in KesoSecurity in Keso

Data privacy


